Lesson 012 Expected Values

Friday, October 6

If you bet $\$ 100$ on a coin toss, what do you expect to happen?

If you flip a coin 100 times, how many heads do you expect to observe?

Expected Value

-The expected value is the average of a probability distribution.

- Also referred to as the expectation.
-For a random variable, X, this is denoted $E[X]$.

Connection to Sample Mean

$$
\begin{gathered}
\{1,2,2,3,7\} \\
\bar{x}=\frac{1+2+2+3+7}{5}=\frac{15}{5}=3
\end{gathered}
$$

Connection to Sample Mean

$$
\begin{aligned}
& \bar{x}=\frac{1+2+2+3+7}{5}=\frac{15}{5}=3 \\
& \bar{x}=\frac{1}{5}(1)+\frac{2}{5}(2)+\frac{1}{5}(3)+\frac{1}{5}(7)
\end{aligned}
$$

Connection to Sample Mean $\quad \frac{1}{5} \quad x=1$ $\frac{2}{5} \quad x=2$ $\{1,2,2,3,7\}$
 $$
p(x)= \begin{cases}\frac{1}{5} & x=3 \\ \frac{1}{5} & x=7\end{cases}
$$
 0 otherwise

Connection to Sample Mean

$$
X \sim p(x) \Longrightarrow E[X]=3
$$

Connection to Sample Mean

$$
\begin{aligned}
E[X]= & (1) P(X=1)+(2) P(X=2)+ \\
& (3) P(X=3)+(7) P(X=7) \\
= & (1) p(1)+(2) p(2)+ \\
& (3) p(3)+(7) p(7)
\end{aligned}
$$

Connection to Sample Mean

$$
\begin{aligned}
E[X] & =\frac{1}{5}(1)+\frac{2}{5}(2)+\frac{1}{5}(3)+\frac{1}{5}(7) \\
& =3
\end{aligned}
$$

Expected Value

- For $X \sim p(x)$ we get

$$
E[X]=\sum x_{i} p\left(x_{i}\right)
$$

\bullet-In general $E[X] \neq \bar{x}$.

A particular illness is treated with a course of treatments, until symptoms subside. Cases require $1,2,3$, or 4 rounds of treatment in $20 \%, 30 \%, 40 \%$, and 10% of situations, respectively. How many treatments are expected for a newly diagnosed individual?

What is the expected value of the Bernoulli distribution? $p(x) \begin{cases}p & x=1 \\ 1-p & x=0 \\ 0 & \text { otherwise }\end{cases}$

Properties of Expectations

- For $X \sim p(x)$ and a function h, we get

$$
E[h(X)]=\sum_{i} h\left(x_{i}\right) p\left(x_{i}\right)
$$

- In general $E[h(X)] \neq h(E[X])$.

Expectations of Linear Functions

- If $h(X)=a+b X$, then

$$
E[h(X)]=a+b E[X]
$$

- Example: T is temperature in Celsius, $F=1.8 T+32$. Then

$$
E[F]=32+1.8 E[T]
$$

The expected weight of a part produced in a manufacturing plant is $E[X]=4.5 \mathrm{~kg}$. The manufacturer begins dealing with a customer who wants the weight in pounds ($1 \mathrm{~kg}=2.2 \mathrm{lbs}$). What is the expected weight in pounds?

9.9	0%
6.7	0%
Not enough information is given.	0%
	0%

A die manufacturer is considering the variability in their process. They find that the expected length of a side on dice that they produce is 1.6 cm . What is the expected volume of the die, assuming that the process always produces exactly cubic dice?

$$
1.6^{3}=4.096
$$

\square
$3 \times 1.6=4.8$
\| 0%
$1.6^{2}=2.56$

Not enough information is provided.

Variance

- Recall that the sample variance was the sample average of squared deviations from the mean.
-The population variance or variance of a distribution is the analogous quantity, with expectations.

Variance

- For $X \sim p(x)$ we get

$$
\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]
$$

- This is $E[h(X)]$ for $h(X)=(X-E[X])^{2}$.

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

A particular illness is treated with a course of treatments, until symptoms subside. Cases require $1,2,3$, or 4 rounds of treatment in $20 \%, 30 \%, 40 \%$, and 10% of situations, respectively. What is the variance in the number of treatments required?

$6.6-2.5^{2}=0.35$	0%
2.4	0%
$6.6-2.4^{2}=0.84$.	0%
6.6	0%

What is the variance of the Bernoulli distribution? $p(x) \begin{cases}p & x=1 \\ 1-p & x=0 \\ 0 & \text { otherwise }\end{cases}$

Properties of Variance

- For $X \sim p(x)$ and a function h, we get $\operatorname{var}\{h(X)\}=E\left[(h(X)-E[h(X)])^{2}\right]$
- In general $\operatorname{var}\{h(X)\} \neq h(\operatorname{var}(X))$.

Variance of Linear Functions

- If $h(X)=a+b X$, then

$$
\operatorname{var}\{h(X)\}=b^{2} \operatorname{var}(X)
$$

- Example: T is temperature in Celsius, $F=1.8 T+32$. Then

$$
\operatorname{var}(F)=3.24 \cdot \operatorname{var}(T)
$$

A company has a weekly pay variance of 100 ．Different raise structures are considered．In one， they would increase everyone＇s pay by $\$ 5$ per week，in the other they would give a 5% raise to each individual．What happens to the variance？

After the raises，each setting will produce the same pay variance，and this will increase from the current level．
〕 0%
After the raises，the first option（constant raise）will produce a higher pay variance than the second．
〕 0
After the raises，the second option（percentage raise）will produce a higher pay variance than the first．
\jmath
After the raises，each setting will produce the same pay variance，and this will decrease from the current level．
〕10\％

Known Distributions

- If $X \sim \operatorname{Bern}(p)$ then

$$
E[X]=p \text { and } \operatorname{var}(X)=p(1-p)
$$

- If $X \sim \operatorname{Geo}(p)$ then

$$
E[X]=\frac{1}{p} \text { and } \operatorname{var}(X)=\frac{1-p}{p^{2}}
$$

